MACHINE ASYNCHRONE - 2

V5

1 Donnée

Une machine asynchrone triphasée a les caractéristiques suivantes :

- Stator couplé en étoile
- $P_{fer} = 0$ (R_{fer} négligée dans le schéma équivalent)
- $P_n = 30 \text{ kW}$
- $U_{nligne} \text{ Y}/\Delta = 400/230 \text{ V}$
- $I_{nligne} \text{ Y}/\Delta = 50/86.6 \text{ A}$
- $f_n = 50 \text{ Hz}$
- p = 2 (nombre de paires de pôles)
- $r_s = 0.02 \text{ pu}$
- $x_{\sigma s} = 0.12 \text{ pu}$
- $x_h = 3 \text{ pu}$
- $r'_r = 0.03 \text{ pu}$
- $x'_{\sigma r} = 0.10 \text{ pu}$

La machine est alimentée sous tension et fréquence nominales.

- 1. Que vaut le courant de ligne à l'instant du démarrage en p.u. ?
- 2. Pour un glissement s=0.027, calculer
 - 2.1 le courant de ligne au stator
 - 2.2 la puissance électrique active consommée au stator
 - 2.2.a en utilisant le $\cos\varphi$ à partir de l'impédance équivalente
 - 2.2.b en calculant la puissance apparente au stator
- 3. Calculer le glissement critique s_K et le couple de décrochage T_K .

2 Préambule

Le but de cet exercice est multiple :

- Faire le passage des p.u. aux vraies grandeurs pour les paramètres du schéma équivalent.
- Calculer l'impédance équivalente de la machine asynchrone.
- Appliquer l'équivalent de Thévenin pour le calcul du couple et du glissement critique (ceci pourrait évidemment être étendu au calcul du couple).

3 Corrigé

Pour un stator couplé en étoile, la tension et le courant de phase nominaux valent :

$$U_n = \frac{U_{nligne}}{\sqrt{3}} = 230 \, [V] \tag{1}$$

$$I_n = I_{nligne} = 50 [A] \tag{2}$$

L'impédance de phase nominale vaut :

$$Z_n = \frac{U_n}{I_n} = 4.6 \left[\Omega\right] \tag{3}$$

Ainsi, les paramètres en vraies grandeurs valent :

$$R_s = r_s Z_n = 0.092 \left[\Omega\right] \tag{4}$$

$$X_{\sigma s} = x_{\sigma s} Z_n = 0.552 \left[\Omega\right] \tag{5}$$

$$X_h = x_h Z_n = 13.8 \left[\Omega\right] \tag{6}$$

$$R'_{r} = r'_{r} Z_{n} = 0.138 \, [\Omega] \tag{7}$$

$$X'_{\sigma r} = x'_{\sigma r} Z_n = 0.46 \left[\Omega\right] \tag{8}$$

1. Courant de ligne à l'instant du démarrage en p.u.

Le glissement à l'instant du démarrage vaut :

$$s = 1 \left[-\right] \tag{9}$$

L'impédance équivalente, pour s = 1, vaut :

$$\underline{Z}_{eq} = R_s + jX_{\sigma s} + \frac{jX_h \left(\frac{R'_r}{s} + jX'_{\sigma r}\right)}{\frac{R'_r}{s} + j\left(X_h + X'_{\sigma r}\right)} = 0.2212 + j0.9984 \left[\Omega\right]$$
(10)

et sa norme:

$$Z_{eq} = |\underline{Z}_{eq}| = 1.0226 \left[\Omega\right] \tag{11}$$

De là, le courant de ligne au démarrage est donné par :

$$I_{start} = \frac{U_n}{Z_{eq}} = 224.91 [A]$$
 (12)

Et en p.u.

$$i_{start} = \frac{I_{start}}{I_n} = 4.4982 [pu] \tag{13}$$

Le courant de ligne est donc \sim 4.5x plus élevé que le courant nominal.

2. Courant de ligne et puissance active électrique au stator

2.1 Courant de ligne au stator

Pour la suite des calculs nous choisissons la tension de phase \underline{U}_{ph} comme purement réelle, ainsi le phaseur et la norme valent :

$$\underline{U}_{ph} = U_{ph} = U_n = 230 [V] \tag{14}$$

Le glissement, pour le cas étudié ici, vaut :

$$s = 0.027 \left[-\right] \tag{15}$$

L'impédance équivalente a déjà été établie à l'équation (10) et vaut pour s=0.027:

$$\underline{Z}_{eq} = R_s + jX_{\sigma s} + \frac{jX_h \left(\frac{R'_r}{s} + jX'_{\sigma r}\right)}{\frac{R'_r}{s} + j\left(X_h + X'_{\sigma r}\right)} = 4.3338 + j2.5175 \left[\Omega\right]$$
(16)

et sa norme :

$$Z_{eq} = |\underline{Z}_{eq}| = 5.0119 \,[\Omega] \tag{17}$$

Le courant de ligne vaut donc, avec un stator couplé en étoile :

$$I_{ligne} = I_{ph} = \frac{U_{ph}}{Z_{eq}} = 45.89 [A]$$
 (18)

2.2.a Puissance électrique au stator en utilisant le $\cos \varphi$ à partir de l'impédance équivalente

Dans ce cas le $\cos\varphi$ est donné par l'angle (argument) de l'impédance équivalente complexe établie à l'équation (16) :

$$\cos \varphi = \cos \left(\arg \left(\underline{Z}_{eq}\right)\right) = 0.8647 \left[-\right] \tag{19}$$

La puissance électrique vaut :

$$P_{el} = 3 U_{ph} I_{ph} \cos \varphi = 27.380 [kW] \tag{20}$$

2.2.b Puissance électrique au stator en calculant la puissance apparente

A partir de l'impédance équivalente déterminée dans (16), il est possible de calculer le phaseur de courant en choisissant la tension de phase \underline{U}_{ph} comme purement réelle, c'est ce que nous avons fait à l'équation (14). Ainsi le courant de phase vaut :

$$\underline{I}_{ph} = \frac{\underline{U}_{ph}}{\underline{Z}_{eq}} = 39.68 - j23.051 [A] \tag{21}$$

La puissance apparente vaut :

$$S = 3 \, \underline{U}_{ph} \, \underline{I}_{ph}^* = 27.380 + j15.905 \, [kVA] \tag{22}$$

et la puissance active électrique est la partie réelle de la puissance apparente, et vaut :

$$P_{el} = 27.380 \, [kW] \tag{23}$$

3. Glissement et le couple critique

Pour déterminer le glissement et le couple critique, l'équivalent de Thévenin doit être calculé. A noter, encore une fois, que nous choisissons \underline{U}_{ph} comme purement réel, c'est ce que nous avons fait à l'équation (14).

La tension de l'équivalent de Thévenin vaut :

$$\underline{U}_e = \underline{U}_{ph} \frac{jX_h}{R_s + j(X_{\sigma s} + X_h)} = 221.14 + j1.4176 \ [V]$$
 (24)

et la norme

$$U_e = 221.15 [V] (25)$$

L'impédance équivalente de Thévenin vaut :

$$\underline{Z}_e = R_e + jX_e = \frac{(R_s + jX_{\sigma s}) jX_h}{R_s + j (X_{\sigma s} + X_h)} = 0.0851 + j0.5313 [\Omega]$$
(26)

La partie réelle et la partie imaginaire valent donc :

$$R_e = 0.0851 \left[\Omega\right] \tag{27}$$

$$X_e = j0.5313 \left[\Omega\right] \tag{28}$$

Le glissement critique vaut alors :

$$s_k = \frac{R_r'}{\sqrt{R_e^2 + (X_e + X_{\sigma r}')^2}} = 0.1387 \to 13.87\%$$
 (29)

Pour le couple critique il nous faut encore calculer le vitesse angulaire (Ω_s) du champ tournant statorique (dans le monde mécanique).

$$f = f_n = 50 \left[Hz \right] \tag{30}$$

$$\Omega_s = 2\pi \frac{f}{p} = 157.0796 [rad/s]$$
 (31)

Ainsi le couple critique, ou couple de décrochage vaut :

$$T_k = \frac{3U_e^2}{2\Omega_s \left[R_e + \sqrt{R_e^2 + (X_e + X'_{\sigma r})^2} \right]} = 432.428[Nm]$$
 (32)